Maximal state complexity and generalized de Bruijn words

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized de Bruijn Cycles

For a set of integers I, we define a q-ary I-cycle to be an assignment of the symbols 1 through q to the integers modulo qn so that every word appears on some translate of I. This definition generalizes that of de Bruijn cycles, and opens up a multitude of questions. We address the existence of such cycles, discuss “reduced” cycles (ones in which the all-zeroes string need not appear), and prov...

متن کامل

Burrows-Wheeler transformations and de Bruijn words

We formulate and explain the extended Burrows–Wheeler transform ofMantaci et al. from the viewpoint of permutations on a chain taken as a union of partial order-preserving mappings. In so doing we establish a link with syntactic semigroups of languages that are themselves cyclic semigroups.We apply the extended transformwith a view to generating de Bruijn words through inverting the transform. ...

متن کامل

Maximal Complexity of Finite Words

The subword complexity of a finite word w of length N is a function which associates to each n ≤ N the number of all distinct subwords of w having the length n. We define the maximal complexity C(w) as the maximum of the subword complexity for n ∈ {1, 2, . . . , N}, and the global maximal complexity K(N) as the maximum of C(w) for all words w of a fixed length N over a finite alphabet. By R(N) ...

متن کامل

Rainbow Domination in Generalized de Bruijn Digraphs

In this paper, we are concerned with the krainbow domination problem on generalized de Bruijn digraphs. We give an upper bound and a lower bound for the k-rainbow domination number in generalized de Bruijn digraphs GB(n, d). We also show that γrk(GB(n, d)) = k if and only if α 6 1, where n = d+α and γrk(GB(n, d)) is the k-rainbow domination number of GB(n, d).

متن کامل

Hamiltonicity of large generalized de Bruijn cycles

In this article, we determine when the large generalized de Bruijn cycles BGC(p, d, n) are Hamiltonian. These digraphs have been introduced by Gómez, Padró and Pérennes as large interconnection networks with small diameter and they are a family of generalized p-cycles. They are the Kronecker product of the generalized de Bruijn digraph GB(d, n) and the dicycle of length p, where GB(d, n) is the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Computation

سال: 2021

ISSN: 0890-5401

DOI: 10.1016/j.ic.2021.104689